Publication trends in gamification: A systematic mapping study

Figure: Topic modeling -based analysis of current application areas in gamification Figure: Topic modeling -based analysis of current application areas in gamification

Gamification, or the application of game elements in non-game environments, is nowadays an increasingly popular field of research. The number of yearly publications on the topic has grown overwhelmingly. In this paper, we mapped the publication trends in gamification, and analyzed which in which fields the application of gamification is most popular. Health, play, education, crowdsourcing, and software development were identified as the most trending topics.

Read More

The paper is available at ScienceDirect. Alternatively, you can request a preprint at ResearchGate.

Abstract

The term gamification and gamified systems are a trending area of research. However, gamification can indicate several different things, such as applying the game-like elements into the design of the user interface of a software, but not all gamification is necessarily associated with software products. Overall, it is unclear what different aspects are studied under the umbrella of ‘gamification’, and what is the current state of the art in the gamification research. In this paper, 1164 gamification studies are analyzed and classified based on their focus areas and the research topics to establish what the research trends in gamification are. Based on the results, e-learning and proof-of-concept studies in the ecological lifestyle and sustainability, assisting computer science studies and improving motivation are the trendiest areas of gamification research. Currently, the most common types of research are the proof-of-concept studies, and theoretical works on the different concepts and elements of gamification.

Reference

Kasurinen, J., Knutas, A. (2018). Publication trends in gamification: A systematic mapping study. Computer Science Review, 27, 33-44. DOI: 10.1016/j.cosrev.2017.10.003

Authors

Profile-Based Algorithm for Personalized Gamification in Computer-Supported Collaborative Learning Environments

Figure: Marczewski's (2015) Gamification User Type Hexad Figure: Marczewski’s (2015) Gamification User Type Hexad

Gamification is a trending topic in both research and commercial applications. However, there has been uncertainity of when and where gamification is effective, and which approaches are suitable different users and environments. Recent studies have proposed that personalization is a key and gamification is not necessarily a one-size fits all method. In this study, we have used the gamification user type hexad (Marczewski, 2015; Tondello et al., 2016), van Roy’s (2017) heuristics for effective gamification design, and Deterding’s (2015) design lenses to create an adaptive gamification system for personalized gamification. The CN2 rule induction machine learning method was used to distill the expert panel created gamification ruleset into a decision-making algorithm. The gamification algorithm matches situations and user types with specific gamification challenges.

The application domain is a computer-supported collaborative learning environment, where software engineering students work together in teams. The aim of the system is to encourage beneficial interactions along the principles of self-determination theory (Deci & Ryan, 2012).

Read More

Read more at the CEUR Workshop Proceedings archive of the Proceedings of the 1st Workshop on Games-Human Interaction (GHITALY 2017) or the preprint at ResearchGate. Alternatively get an overview from the conference presentation slides.

Open Science!

The paper is freely available as open access. Additionally, project materials and source code are available both in GitHub, and permanently archived in Zenodo, the open access research data repository. See links for both below in the references section.

Abstract

In this paper we present an approach for personalizing gamification to the needs of each individual person. We designed the personalization for computer-supported collaborative learning environments by synthesizing three existing design frameworks: the lens of intrinsic skill atoms, gamification user type hexad and heuristics for effective design of gamification. The result of the design process is a context-aware and personalized gamification ruleset for collaborative environments. We also present a method for translating gamification rulesets to machine-readable classifier algorithm using the CN2 rule inducer and a framework for connecting the produced algorithm to collaborative software. Lastly, we present an example software for personalized gamification that was produced by applying the process presented in this paper.

References

Knutas, A., van Roy, R., Hynninen, T., Granato, M., Kasurinen, J., & Ikonen, J. (2017). Profile-Based Algorithm for Personalized Gamification in Computer-Supported Collaborative Learning Environments. In Proceedings of the 1st Workshop on Games-Human Interaction (GHITALY 2017). (CEUR-WS | Preprint from ResearchGate)

Knutas, A., van Roy, R., Hynninen, T., Granato, M., Kasurinen, J., & Ikonen, J. (2017, September 18). Online Appendix for “Profile-Based Algorithm for Personalized Gamification in Computer-Supported Collaborative Learning Environments”. Zenodo. http://doi.org/10.5281/zenodo.827225

Authors
External References

Deci, E. L., & Ryan, R. M. (2012). Motivation, personality, and development within embedded social contexts: An overview of self-determination theory. The Oxford Handbook of Human Motivation, 85–107.

Deterding, S. (2015). The Lens of Intrinsic Skill Atoms: A Method for Gameful Design. Human–Computer Interaction, 30(3–4), 294–335.

Marczewski, A. (2015). User Types. In Even Ninja Monkeys Like to Play: Gamification, Game Thinking and Motivational Design (1st ed., pp. 65-80). CreateSpace Independent Publishing Platform.

Tondello, G. F., Wehbe, R. R., Diamond, L., Busch, M., Marczewski, A., & Nacke, L. E. (2016). The Gamification User Types Hexad Scale. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (pp. 229–243). New York, NY, USA: ACM.

Roy, R. van, & Zaman, B. (2017). Why Gamification Fails in Education and How to Make It Successful: Introducing Nine Gamification Heuristics Based on Self-Determination Theory. In M. Ma & A. Oikonomou (Eds.), Serious Games and Edutainment Applications (pp. 485–509). Springer International Publishing.

Why Do People Use Wearables? A View from Universities

Figure: Wearables Acceptance Model Figure: Wearables Acceptance Model

Wearable devices are in the first big peak of the hype cycle. In the article “Intended use of smartwatches and pedometers in the university environment: an empirical analysis” my collague Jayden and the rest of the team investigate what motivates people to use them. We used his prototype wearable acceptance model (WAM) and partial-least squares path modeling to find causalities in people’s views and their intention to use wearables.

In this initial study we found that the following factors affect people’s decision to use wearables:

  • Performance Expectancy, or the belief that the device will help the user achieve his or her daily goals.
  • Social Influence, or peer pressure.
  • Privacy Concerns.
  • Wearability, or how the devices can be worn. By contrast, aesthetics or other physical characteristics did not affect intention to use.

Additionally, there was an interesting non-affecting factor: Effort Expectancy. Users’ beliefs about the ease of use did not have an impact on their intention to use.

Read More

The paper is available as a preprint at ResearchGate. Full paper metadata is available at ACM Digital Library.

Abstract

In this work, we empirically examine factors that influence the intention to use wearables e.g. smartwatch or pedometer, in the university environment through a Wearable Acceptance Model (WAM). WAM incorporates UTAUT model and additional variables like wearable characteristics (e.g. wearability, design and physical characteristics), attitude and privacy. WAM was used with an online survey of 129 university faculty, staff and students. Further, partial least square (PLS) path modeling was applied in analysis of 14 hypotheses to validate WAM results. In accordance to WAM, wearability and attitude tend to have a direct effect on intention to use, whereas performance and effort expectancy had only a direct influence on attitude and no direct influence on usage intention. Similarly, privacy concern, social influence had a positive influence on the intention to use both directly and indirectly through attitude. However, design and physical characteristics had no effect on intention to use. This study makes a unique empirical contribution to wearable research by extending knowledge on university users’ behavior regarding wearables for well-being.

Reference

Jayden Khakurel, Antti Knutas, Mika Immonen, and Jari Porras. 2017. Intended use of smartwatches and pedometers in the university environment: an empirical analysis. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers (UbiComp ‘17). ACM, New York, NY, USA, 97-100. DOI: 10.1145/3123024.3123147

Authors

Experiences from Video Lectures in Software Engineering Education

Figure: Screenshot from a Video Lecture on Gamification Figure: Screenshot from a Video Lecture on Gamification

In this research paper we publish our results from a longitudal study where we observed ten courses that used video instruction as a part of a course. Overall the experiences with video-based learning were positive. The video lectures were perceived to be highly useful by the students and were rated to be the most useful component of the course in a majority of the observed courses. Also, some of the tutorial videos received a lot of traffic from external sources, indicating that the videos provided additional benefit to the wider public.

The problems identified from prior research, especially the added effort and costs of video production, were not not an issue. We also found that unlike in previous literature, the video length did not affect usage patterns or student satisfaction. Previously shorter videos have been recommended, but longer and well-structured videos worked just as well.

One notable statistic is that the majority of viewers used a desktop or a laptop machine (84%), while only a fraction (14%) used mobile devices such as smartphones or tables.

See also our previous work on flipped classroom teaching method, which depends heavily on video lectures (presentation slides on flipped classroom).

Read More

Preprint is available at ResearchGate.

Abstract

Millennials have learned to seek information from the Internet whenever they need to know something and want to learn things. In this study, we present observations from several university courses with freely available online resources for the modern students. Ten different courses with video lectures were observed, often with positive outcomes and improved results compared to the previous course arrangements. Additionally, unlike in some previous literature, we observed that some issues such as the video length did not have a meaningful impact on the learning outcomes. Overall, the results indicate that videos offer excellent benefit-effort-ratio, and are an efficient way to reach the target audience: the students.

Reference

Antti Herala, Antti Knutas, Erno Vanhala, Jussi Kasurinen,”Experiences from Video Lectures in Software Engineering Education”, International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.5, pp.17-26, 2017. DOI: 10.5815/ijmecs.2017.05.03

Authors

Increasing Beneficial Interactions in a Computer-Supported Collaborative Environment

Figure: A Three Cycle view of Design Science Research Process Figure: A Three Cycle view of Design Science Research Process (Hevner, 2007)

My recently defended doctoral thesis on computer-supported collaborative work is now available online. The application domain in university level engineering education, and gamification is one of the major methods I investigated and applied. The thesis also includes a rather thorough use of the design science methodology in design, implementation cycles and validation.

Read More

Find the PDF available for free from the Doria library archive.

Reference

Knutas, A. (2016). Increasing Beneficial Interactions in a Computer-Supported Collaborative Environment. Acta Universitatis Lappeenrantaensis.

Publications included in the thesis

  1. Knutas, A., Ikonen, J., & Porras, J. (2013). Communication patterns in collaborative software engineering courses: a case for computer-supported collaboration. In Proceedings of the 13th Koli Calling International Conference on Computing Education Research (pp. 169-177). ACM. Preprint from ResearchGate.
  2. Knutas, A., Ikonen, J., & Porras, J. (2015). COMPUTER-SUPPORTED COLLABORATIVE LEARNING IN SOFTWARE ENGINEERING EDUCATION: A SYSTEMATIC MAPPING STUDY. International Journal on Information Technologies & Security, 7(4). IJITS Archive. Preprint from ResearchGate.
  3. Ikonen, J., Knutas, A., Wu, Y., & Agudo, I. (2015, November). Is the world ready or do we need more tools for programming related teamwork?. In Proceedings of the 15th Koli Calling Conference on Computing Education Research (pp. 33-39). ACM. Preprint from ResearchGate.
  4. Knutas, A., Ikonen, J., Nikula, U., & Porras, J. (2014, June). Increasing collaborative communications in a programming course with gamification: a case study. In Proceedings of the 15th International Conference on Computer Systems and Technologies (pp. 370-377). ACM. Preprint from ResearchGate.
  5. Knutas, A., Ikonen, J., Maggiorini, D., Ripamonti, L., & Porras, J. (2016). Creating Student Interaction Profiles for Adaptive Collaboration Gamification Design. International Journal of Human Capital and Information Technology Professionals (IJHCITP), 7(3), 47-62. DOI: 10.4018/IJHCITP.2016070104. IGI Global.

Abstract

University and software engineering teaching are changing in response to the industry demand for new skills. Learning is becoming more interactive, and the impact of student collaborative learning has increased. The extension of collaboration with computer-supported collaborative environments allows increased knowledge building between a wider range of participants. More flexible teaching structures independent of place or time, better monitoring of student understanding by instructors, and improved student productivity and satisfaction can also be facilitated. However, the collaboration has to be implemented carefully, or it will become a drawback instead of a benefit. The first objective of this study is to document the current state of the utilization of collaborative environments and methods in software engineering education. The next stage is to use the results to first specify the requirements for a computer-supported collaborative environment, then to design and implement a prototype, and finally to use this prototype to evaluate and validate the design for improved collaboration. The research follows the design science research process, where a solution design is created through an iterative design and evaluation process and the solution is validated through its utility. A design for improving collaboration by improving issue-related and inter-team communication is created. The collaboration is promoted further by applying gamification to the design. The study shows that engineering students can be encouraged to collaborate online with the application of gamification, that the system increases connectivity in collaboration patterns, and in some cases this collaboration has positive results for learning goals. During the research, the state of gamification design for computer-supported collaboration was developed further by connecting it with the theory of player profiles. Different types of players respond best to different kinds of rewards, for example a simulated social status or additional challenges instead of just an increased score. This study also presents a method for creating gamification profiles from empirical observations in collaborative learning environments.